
QBWinFont
Routines to Display Window's Raster Fonts

in QuickBasic and DOS QBasic

Unregistered Version 1.0

Copyright 1994

Nybble Software
P.O. Box 7213

Tuscaloosa, AL 35486

QBWinFont: Unregistered Version 1.0 2

QBWinFont
Unregistered Version 1.0

Release Date: March 1, 1994

Copyright 1994
Nybble Software
P.O. Box 7213

Tuscaloosa, AL 35486

The entire contents of this manual are copyrighted by Nybble Software. All rights
reserved. No part of the contents of this manual may be reproduced or transmitted in
any form or by any means without the prior written permission of Nybble Software.
The contents of this manual are subject to change without notice.

Liabilities: This software is provided AS IS. No expressed or implied warranty of any
kind exists, including but not limited to the implied warranty of fitness for any
purpose. Users of the software assume all responsibility for its application and
performance.

Nybble Software makes no statements or claims concerning the legal issues involved
in using Windows' fonts for your programs. One should assume all font resources are
copyrighted, unless specifically stated otherwise in the font documentation.

All product names mentioned in this package's software or attached documentation are
trademarks or registered trademarks of their respective owners.

Questions, comments, or suggestions are welcomed
at the above address or at the e-mail address:

joe@galcit.caltech.edu

QBWinFont: Unregistered Version 1.0 3

1 Introduction

QBWinFont is a set of QB routines which allow Windows' raster (bitmap) fonts to be
displayed in graphics modes in QuickBasic or DOS QBasic. The QBWinFont routines can
load and display fonts from individual font files (FNT), font resource files (FON), and other
Windows' resource files (EXE, DLL, etc.). Fonts are loaded into easy to access integer arrays.
All routines are coded entirely in QB for convenient use and modification in either
QuickBasic and DOS QBasic. Extensive documentation is included along with an example
program for each routine.

QBWinFont is shareware. If you find this product useful, please register it. Instructions and
an order form are included at the end of this manual.

2 Windows Font Files

Windows uses three types of fonts: raster (or bitmap) fonts, vector fonts, and TrueType fonts.
A bitmap font stores characters as a series of bitmaps for each row of a character. A vector
font stores characters as a series of line segment to be drawn. TrueType fonts, introduced in
Windows 3.1, are complex outline fonts which can be scaled to any point size and look the
same when printed as when viewed on the screen. The first two types of fonts are called
screen fonts and plotter fonts respectively in the Windows documentation.

Bitmap fonts can be further divided into fixed (or monospace) and proportional fonts. For
fixed fonts all characters have the same width, such as with the DOS system fonts. For
proportional fonts, the widths of the characters vary. For example in a proportional font, the
letter i would be much narrower than the letter W. Proportional fonts look much more
professional, although arguably at a cost of readibility for small font sizes.

FNT files are files which contain store individual bitmap or vector fonts. These individual
fonts are generally found compiled into FON resource files which contain one or more related
fonts. However, FON files are just one type of Windows' resource files. Executable files
(EXE) and dynamic link libraries (DLL) are also examples of resource files.

3 Getting Started

QBWinFont can only be used with raster (bitmap) fonts. The QBWinFont subroutines can
load fonts from FNT files, FON files, or other types of resource files, although resource files
other than FON files rarely contain any font resources. In addition, the included QB program
FileInfo can be used to browse through resource files.

3.1 QuickBasic

In QuickBasic 4.x, the QBWinFont subroutines can be easily accessed by loading the file
qbwinfnt.bas as a separate program module. When running the example programs,
remember to be sure the qbwinfnt.bas file is loaded. This will be done automatically if the

QBWinFont: Unregistered Version 1.0 4

Open command is used to load the programs.

3.2 DOS QBasic Users

DOS QBasic does not allow loading more than one program module. This means programs
which use the QBWinFont subroutines will have to include the source code of the
subroutines directly in the program. The easiest way to do this is to copy the file
qbwinfnt.bas to a work file and then program directly in the work file.

To run the QBWinFont example programs, they must be combined with the subroutines in
the file qbwinfnt.bas. First copy the file qbwinfnt.bas to a work file. Next Open the
example program you would like to run in QBasic, select the entire program text with the
cursor or mouse, and choose Copy in the Edit menu. Then, Open the work file (which
contains all the subroutines), and Paste the entire example program into the work file at the
end of the main program. The work file can then be executed.

3.3 Loading Fonts

The QBWinFont routines load bitmap fonts stored in Windows' font files (FNT) or resource
files (FON, EXE, DLL, etc.), although few resource files other than FON files contain any
fonts. To load a font from a FNT file, call the LoadFontFile with a file name and a font array
in which to store the font. For example, to load the font in the included file sample.fnt:

REDIM FontArray%(1)
CALL LoadFontFile("SAMPLE.FNT", FontArray%(), RetCode%, RetMsg$)

Notice that the font array is created with REDIM to be DYNAMIC, so that the load routine can
resize the array.

To load a font from a FON resource file, call the LoadRsrcFileFont with a file name and a
font array in which to store the font. Only one additional step is needed that was not needed
before: since the FON file may contain more than one font, a font number must be specified.
For example, to load the first (and only) font in the included font resource file sample.fon:

REDIM FontArray%(1)
FontNum% = 1
CALL LoadRsrcFileFont("SAMPLE.FON", FontNum%, FontArray%(), _

RetCode%, RetMsg$)

There are several ways to see how many fonts of what size are in a FON resource file. First,
the included QB program FileInfo will scan a resource file and print information on all the
fonts and font directories found. Alternately, one could go into Windows and load the font
using the Fonts applet in the Control Panel. For bitmap fonts, the sizes for all the installed
fonts are listed. Finally of course, one could just keep trying successive font numbers with
the LoadRsrcFileFont subroutine until an error occurs.

3.4 Displaying Text from Loaded Fonts

Once the fonts are loaded, the subroutines DispChar and FastChar can be used to display

QBWinFont: Unregistered Version 1.0 5

single characters from the font, and DispString and FastString to display text strings. For
example, we'll display "Hello World" from one of the fonts loaded above. We'll use 640x480
graphics mode with the text in foreground color 15 (white) and background color 1(blue) at
location (x,y) = (100,100):

SCREEN 12
CALL DispString("Hello World", 15, 1, 100, 100, FontArray%())

Note that since font display is done using the QB LINE command, we have to be in a
graphics mode.

The subroutines FastChar and FastString display faster by only using a foreground color.
This allows the main loop to be optimized for a major speed increase. Unless background
colors are needed, you will probably want to use the faster routines.

All the display routines return the x-coordinate set to the start of the next character. This
means that if you call the routines consecutively without redefining the x-coordinate,
characters will be spaced correctly. For example, the following commands are identical to
displaying the digits as a single string, since X% is updated by the call to FastString:

X% = 100
CALL FastString("01234", 15, X%, 100, FontArray%())
CALL FastString("56789", 15, X%, 100, FontArray%())

3.5 Saving Fonts

Font arrays can be saved with the routine BSAVEFont which uses the QB command BSAVE
to store the entire font array. For example, to save the font array loaded above in the file
test.bin:

CALL BSAVEFont("TEST.BIN", FontArray%())
A font in a file created with BSAVEFont can be loaded quickly with BLoadFont, much
quicker than the font can be loaded from a FNT or resource file. If we wanted to load the file
dtch_bld.bin which is included with the package:

REDIM BoldFont%(1)
CALL BLOADFont("DTCH_BLD.BIN", BoldFont%(), RetCode%)

Note that once again we've used REDIM so the font array can be resized by the subroutine.

QBWinFont: Unregistered Version 1.0 6

4 Summary of QBWinFont Routines

DECLARE SUB BLOADFont(FlName$, FontArray%(), RetCode%)
Subroutine to BLOAD a font array from the specified file, which must have been created
with BSAVE. The font array must by DYNAMIC to allow for redimensioning.

DECLARE SUB BSAVEFont(FlName$, FontArray%())
Subroutine to store a font array to the specified file using BSAVE.

DECLARE SUB DispChar(Char%, FClr%, BClr%, X%, Y%, FontArray%())
Subroutine to display the specified character with upper-left corner at (X%,Y%) in fore-
and background colors. The x-coordinate of the start of the next character is returned in X
%.

DECLARE SUB DispString(Text$, FClr%, BClr%, X%, Y%, _
FontArray%())

Subroutine to display the given text string with the upper-left corner of the first character
at (X%,Y%) in fore- and background colors. The x-coordinates of the start of the next
character is returned in X%.

DECLARE SUB FastChar(Char%, FClr%, X%, Y%, FontArray%())
Subroutine to display the specified character with upper-left corner at (X%,Y%) in
foreground color only. The coordinates of the start of the next character are returned in X
%.

DECLARE SUB FastString(Text$, FClr%, X%, Y%, FontArray%())
Subroutine to display the given text with upper-left corner of the first character at (X%,Y
%) in foreground color only. The x-coordinates of the start of the next character is
returned in X%.

DECLARE SUB LoadFontFile(FlName$, FontArray%(), RetCode%, _
RetMsg$)

Subroutine to create a font array from the given Windows' font (FNT) file. The font array
must by DYNAMIC to allow for redimensioning.

DECLARE SUB LoadRsrcFileFont(FlName$, FontNum%, FontArray%(), _
RetCode%, RetMsg$)

Subroutine to create a font array from the specified font number in a Windows' resource
file, typically a FON file. The font array must by DYNAMIC to allow for redimensioning.

DECLARE FUNCTION WidthString%(Text$, FontArray%())
Function to return the width in pixels of a string in the given font.

QBWinFont: Unregistered Version 1.0 7

5 Finding Fonts

Nybble Software makes no statements or claims concerning the legal issues involved in using
Windows' fonts for your programs. One should assume all font files are copyrighted, unless
specifically stated otherwise in documentation provided with the fonts.

(As a dissenting view, we note Steve Rimmer in Super VGA Graphics: Programming Secrets
states that although font names can be (and are) copyrighted, the actual bitmap patterns cannot
be copyrighted. He states: "In theory, this means you can use any fonts you acquire from any
source in your applications without having to be concerned with who created them." Please
note however that he does go on to constrain this statement with several cautions.)

5.1 Locating FON files

With the advent of TrueType fonts in Windows 3.1, bitmap fonts are becoming increasingly
hard to find. Some examples are available at ftp.cica.indiana.edu (or one of its many mirror
sites) in the directory \pub\pc\win3\fonts. Although the copyright status of several of these
fonts is not clear, most are labeled as freeware or shareware.

When handling Windows' resource files, the freeware program RX might be helpful. The
program along with source code can be found in rx.zip at ftp.cica.indiana.edu in the
directory \pub\pc\win3\util. The program can be used to extract individual resources from
Windows' compiled resource files. For example, individual fonts can be extracted from FON
files into FNT files.

5.2 Converting TrueType Fonts

QBWinFont only supports bitmap fonts, however separate programs are available which will
convert a TrueType font at a specified point size to a bitmap font. One example is the
freeware program SysFon which converts TrueType fonts to bitmap FON resource files. This
program with source code is available by anonymous ftp from ftp.cica.indiana.edu (or one of
its many mirror sites) in the directory \pub\pc\win3\fonts. Using SysFon, TrueType font
characters can be accurately reproduced at a given point size, except the bitmap fonts do not
allow for overhanging characters. This can cause problems for some fonts, particularly italic
fonts.

TrueType fonts are the easist to find font files for Windows. A nice selection of TrueType
fonts already comes with Windows, and collections of fonts are available commercially in the
range of $1 per font family. Anonymous ftp sites and BBS's often contain TrueType fonts,
although many of these are foreign language or novelty fonts.

5.3 Other

Of course a wide range of commercial programs exist which allow creating, converting, and
editing fonts for Windows. For example, Adobe Type Manager (ATM) for Windows is a

QBWinFont: Unregistered Version 1.0 8

powerful package, and a wide variety of ATM fonts are available by anonymous ftp or
commercially.

6 Internal Workings

6.1 Font Arrays

The font data is read in from the resource file and stored in an integer array. Using an integer
array allows the font header information to be read quickly as elements of the array. However
to save memory the bitmap data is stored directly into memory, and not aligned into array
elements. The bitmap data must therefore be accessed using PEEK.

The font array header contains information about the font which needs to be quickly accessed
for displaying characters. These values are placed in array elements for faster access. The
header consists of the elements 0 through 10 of the font array defined as follows:

 ELEMENT VALUE
FontArray%(0) Font height in pixels
 1 Number of characters in font char set
 2 First character in font char set
 3 Last character in font char set
 4 Default character
 5 Break character
 6 Maximum character width in pixels
 7 Vertical spacing
 8 Ascent (distance from baseline to char top)
 9 Horizontal padding (to add between chars)
 10 Vertical padding (to add between lines)

Upon creating a font array from a font or resource file, the font height, first/last/default/break
characters, maximum character width, and ascent are taken directly from the file values. The
number of characters is calculated from the first and last character values. The vertical
spacing is set to the character height. Finally, the vertical and horizontal padding values are
set to zero.

Following the font array header, the width in pixels of each character is stored in the font
array elements 11 to 11+N-1, where N is the total number of characters in the font character
set. Therefore the width of a character with specified ASCII code (char%) can be found
using the formula:

RelChar% = char% - FontArray%(2) '...relative char #
CharWidth% = FontArray%(11 + RelChar%) '...char width in pixels

Note that the character number relative to the first character is used to access the correct array
element.

Following the character width information, the offset to the start of each character's bitmap
data is stored in font array elements 11+N to 11+2*N-1, where N is the total number of

QBWinFont: Unregistered Version 1.0 9

characters in the font character set. The offset of the bitmap data for a given character with a
given ASCII code (char%) can be found using the formula:

RelChar% = char% - FontArray%(2) '...relative char #
Ptr& = FontArray%(11 + FontArray%(1) + RelChar%)

Note that both the character number relative to the first character and the total number of
characters (FontArray%(1)) are needed to access the correct array element. The situation
is further complicated by the fact that the unsigned offset integer is stored as a signed value.
For large fonts, this can lead to the offset (Ptr&) being negative. Therefore the long-integer
pointer must be converted to an unsigned integer value before using:

IF (Ptr& < 0) THEN Ptr& = 65536 + Ptr& '...adjust offset

Once the offset is found, the bitmap data can be accessed using PEEK. For example, the first
row of bitmap data is found using the above pointer:

Pattern% = PEEK(Ptr& + VARPTR(FontArray%(0)))
This gives the first byte of the first row of the character. The bitmap data then continues
down the character until all rows in the height of the character are completed. If the character
is over a byte (8 pixels) wide, the bitmap data continues with the second byte of the first row.
The data then continues down the second byte of the character, and so on for the number of
bytes in the width of the character.

6.2 Font Resource Data

The font header for Windows' font resources is shown below defined as a QB data type. Note
that integers (2-bytes) can be read in directly. However for large values care has to be taken
since QB reads in the values as signed integers. QB does not have a byte type, so bytes have
to be read in as strings of length one. To use the byte values, the one character strings are
converted to integers with the ASC command.

TYPE FontType
 Version AS INTEGER
 Size AS LONG
 Copyright AS STRING * 60
 FType AS INTEGER
 Pnt AS INTEGER
 VertRes AS INTEGER
 HorizRes AS INTEGER
 Ascent AS INTEGER
 IntLeading AS INTEGER
 ExtLeading AS INTEGER
 Italic AS STRING * 1
 Underline AS STRING * 1
 StrikeOut AS STRING * 1
 Weight AS INTEGER
 CharSet AS STRING * 1
 PixWidth AS INTEGER
 PixHeight AS INTEGER
 PitchFamily AS STRING * 1

QBWinFont: Unregistered Version 1.0 10
 AvgWidth AS INTEGER
 MaxWidth AS INTEGER
 MaxWidth AS INTEGER
 FirstChar AS STRING * 1
 LastChar AS STRING * 1
 DefaultChar AS STRING * 1
 BreakChar AS STRING * 1
 WidthBytes AS INTEGER
 Device AS LONG
 Face AS LONG
 BitsPointer AS LONG
 BitsOffset AS LONG
 Reserved1 AS STRING * 1
END TYPE

The entries are briefly described below. Only the definitions relevant to bitmap fonts are
mentioned here, some of the values have different meanings for vector fonts.

Version Equals 0200h for version 2.x or 0300h for version 3.x. Version 3.x fonts are
stored in a slightly different format and are not supported by QBWinFont.

Size Size of the font resource in bytes.
Copyright Copyright.
FType Font type. If bit 0 is set the font is a vector font, otherwise the font is a raster

(bitmap) font. QBWinFont does not support vector fonts.
Pnt Point size of the font.
VertRes Recommended vertical resolution in pixels per inch.
HorizRes Recommended horizontal resolution in pixels per inch.
Ascent Distance from character baseline to the top of the character cell. This value is

important for aligning different size fonts on the same baseline.
IntLeading Internal leading. Distance above top of character to top of character cell. May

be zero.
ExtLeading External leading. Recommended distance above the character cell between

font rows. May be zero.
Italic Set to 1 for italic font.
Underline Set to 1 for underline font.
StrikeOut Set to 1 for a strike-out font.
Weight Weight of the font ranging from 0 to 1000, the higher the value the denser the

font. (Common values are 0 = don't care, 400 = regular, 700 = bold.)
CharSet Type of font character set: 0 = ANSI character set, 2 = symbolic character set,

255 = OEM for DOS compatible fonts.)
PixWidth Width of font in pixels. For proportional fonts this value is zero, and each

character's width is specified individually.
PixHeight Height of font in pixels.
PitchFamily Pitch and family. The font family is stored in the upper nibble: 0 = don't care,

10h = roman, 20h = swiss, 30h = modern, 40h = script, 50h = decorative. The
pitch is stored in the lowest bit. If bit 0 is set, the font pitch is variable.

AvgWidth Average width, typically the width of a capital X.

QBWinFont: Unregistered Version 1.0 11

MaxWidth Maximum character width.
FirstChar ASCII value of first character (0 - 255) in font. A character range is required

since many fonts do not define all possible characters.
LastChar ASCII value of last character (0 - 255) in font.
DefaultChar Default character, relative to the first char, to display for characters outside the

range of characters defined in the font.
BreakChar Default character, relative to the first char, to use as a word seperator, typically

the space character.
WidthBytes Width in bytes in each row of a raster font's bitmap.
Device Offset in bytes from beginning of font resource to font's device name stored as

a string. May be null.
Face Offset in bytes from beginning of font resource to font's face name stored as a

string.
BitsPointer Unused and set to zero.
BitsOffset Offset in bytes from beginning of font resource to start of font bitmap data.
Reserved Reserved.

Note that not all of the font information is stored in the QB font array. Much of the font
information is provided to help programs identify a particular font, and to locate the available
font closest to a particular specification. For QBWinFont, the contents of font arrays loaded
are assumed to be known to the program, and the main elements stored are values which need
to be rapidly accessed for character display.

6.3 Customizing the Routines For Speed and Memory

QBWinFont can be optimized to improve memory or speed if one limits the types of fonts
handled or writes custom versions of the routines. Of course, the appropriate solution to the
speed problem is Assembly or C routines, but that's another matter.

About the only improvement to make in the speed of the routines in QB is at the expense of
memory. When loading the fonts, each byte of bitmap data could be shifted into the upper
byte of an integer and stored in an array element. This would allow line patterns to be taken
directly from font array elements instead of using PEEK. Of course, this would double the
memory required to store the font's bitmap data.

Recall in fixed fonts, all characters are the same width. If your program only uses fixed fonts,
the character width and bitmap offset information could be removed from the font array to
save space. The maximum character width entry in the font array could then be used as the
character width. Since all character's bitmaps would be the same length, the bitmap offset
could be calculated by multiplying the character number by the bitmap length per character.

If memory is a problem, consider writing a routine to remove unused characters from a font.
For instance, if a program only uses the upper case letters of a font for a title screen, all the
remaining characters could be removed. To do this, update the first, last, and default
characters in the font array header. Then relocate all the character widths and offsets

QBWinFont: Unregistered Version 1.0 12

downward in the font array and recompute the bitmap offsets to reflect the removed
characters. Modifyng the LoadRsrcFileFont routine to only load a certain range of
characters might be an easier alternative.

Fixed fonts less than a byte (8 pixels) wide can be installed as the graphics font using the
video bios. Then the fonts would automatically be used by PRINT statements. This would
lead to much faster display, although only at row, column locations and not at any x,y
location.

6.4 Unsupported Font Resources

The font resources established by Windows have several features which are not supported by
QBWinFont. Only file-based fonts are supported, not fonts stored at an absolute memory
address, as with fonts realized by device drivers.

Most importantly, QBWinFont does not support font resources stored in Version 3.x format.
The main new feature of the Version 3.x format is the ability to store font resources larger
than 64K. Supporting these in QB would require a good bit more complexity in the display
routines, and BSAVE and BLOAD could not be used directly to save and load files. This
restriction will hopefully not be a problem for users, since during program development no
Version 3.x bitmap font resources were encountered. Besides, a number of Windows
programs also do not support font resources over 64K. (This does not mean that the resource
file cannot be over 64K, only that an individual font resource cannot be over 64K.)

6.5 Bugs, Limitations, and Improvements

Known bugs and limitations include:
* Routines do not handle Version 3.x bitmap fonts, even if the fonts are under 64K.
* Load routines do not provide an error message for attempting to load non-file-based
 fonts.

Needed improvements include:
* Some fonts do not correctly set the default character. The routines should attempt to
 handle this more gracefully.
* A routine is needed to remove unwanted characters from a font array to save memory.
* Program should be able to write a FNT file from a resource file font.

7 References

Rimmer, Steve. Super VGA Graphics: Programming Secrets. New York: Windcrest, 1993.
Swan, Tom. Inside Windows File Formats. Sams Publishing, 1993.

8 Acknowledgements

The sample font resource file sample.fon included with this package was created using

QBWinFont: Unregistered Version 1.0 13

SysFon from the TrueType Kashmir font by Adam Albright and modified by Matt Hill. The
sample font file sample.fnt was created using RX from the fonts included in the
woafon14.zip package by Steve Karrer. All files were downloaded by anonymous ftp from
ftp.cica.indiana.edu.

QBWinFont: Unregistered Version 1.0 14

Appendix A
List Of Routines

QBWinFont: Unregistered Version 1.0 15

BLOADFont
__

Subroutine to BLOAD the given font array from the specified file. The size of the file to load
is obtained first, so that the font array can be redimensioned to the size of the data. If the file
is of size zero, the return code is set to True (-1), otherwise the return code is set to False (0).

To allow redimensioning of the array, the font array must be DYNAMIC. This can be done by
using the $DYNAMIC metacommand in QB, or more simply, by creating the original array
with REDIM instead of DIM. (See the example below.)

The file to load with BLOAD must have been created with BSAVE. BSAVE adds a 7-byte
header containing size info, which is used by BLOAD to determine the amount of data to load.

Format:
DECLARE SUB BLOADFont(FlName$, FontArray%(), RetCode%)

Arguments:
 FlName$ = file name from which to BLOAD the font array
 FontArray% = integer array containing font data, must be
 a DYNAMIC array to allow redimensioning
 RetCode% = return code, set to True (-1) for file size zero

Example:
The following example demonstrates using BLOAD to load a font array from a disk file
(dtch_bld.bin) previously created with BSAVE.

REM: EX_BLDFT.BAS, Unregistered Version 1.0
REM: Example of using BLOAD to load a font array.

DECLARE SUB BLOADFont(FlName$, FontArray%(), RetCode%)
DECLARE SUB FastString(Text$, FClr%, X%, Y%, FontArray%())

'...setup a VGA screen mode...
SCREEN 12

'...dimen array for font data (use REDIM so its DYNAMIC)...
REDIM FontArray%(1)

PRINT : PRINT "BLOAD'ing a font from DTCH_BLD.BIN..."

'...load the font in one of the example BIN files...
CALL BLOADFont("DTCH_BLD.BIN", FontArray%(), RetCode%)

'...check return code, catches non-existent file...
IF (RetCode% <> 0) THEN STOP

'...get the height for below...
Ht% = FontArray%(0)

QBWinFont: Unregistered Version 1.0 16
'...display the capitals, lower case, & numbers...
CALL FastString("ABCDEFGHIJKLMNOPQRSTUVWXYZ", 4, 80, 100, FontArray%())
CALL FastString("abcdefghijklmnopqrstuvwxyz", 4, 80, 100 + Ht%, _

FontArray%())
CALL FastString("1234567890", 4, 80, 100 + 2 * Ht%, FontArray%())

END

QBWinFont: Unregistered Version 1.0 17

BSAVEFont

Subroutine to BSAVE the given font array to the specified file. Using BSAVE to store a file
allows the font to be stored individually in a smaller file than the original FON file. Since the
font data has already been loaded into the array elements, a font array stored with BSAVE also
allows for faster loading.

Format:
DECLARE SUB BSAVEFont(FlName$, FontArray%())

Arguments:
 FlName$ = file name in which to BSAVE the font array
 FontArray% = integer array containing font data

Example:
The following example demonstrates using BSAVE to save a font array to a disk file. The
font array is loaded from the first font in the example FON file sample.fon, a sample of
the font is displayed, and then the font is stored in the file test.bin using BSAVE.

REM: EX_BSVFT.BAS, Unregistered Version 1.0
REM: Example of using BSAVE to store a font array to disk.

DECLARE SUB BSAVEFont(FlName$, FontArray%())
DECLARE SUB FastString(Text$, FClr%, X%, Y%, FontArray%())
DECLARE SUB LoadRsrcFileFont(FlName$, FontNum%, FontArray%(), _

RetCode%, RetMsg$)

'...setup a VGA screen mode...
SCREEN 12

'...dim array for font data (use REDIM so its DYNAMIC)...
REDIM FontArray%(1)

PRINT : PRINT "Loading a font from SAMPLE.FON..."

'...load the font in the example FON file...
CALL LoadRsrcFileFont("SAMPLE.FON", 1, FontArray%(), RetCode%, _

RetMsg$)

IF (RetCode% <> 0) THEN
 PRINT "***** ERROR: RetCode% = "; RetCode%
 PRINT "***** "; RetMsg$
 STOP
END IF

'...display a sample of the font...
CALL FastString("Sample of Font ", 4, 10, 60, FontArray%())

LOCATE 8, 1: PRINT "BSAVE font array to file TEST.BIN...";

QBWinFont: Unregistered Version 1.0 18
'...save the file using BSAVE for quick future access...
CALL BSAVEFont("TEST.BIN", FontArray%())

PRINT "Completed!": PRINT

PRINT "See the example EX_BLDFT.BAS for an example of loading"
PRINT "a font file created with BSAVE."

END

QBWinFont: Unregistered Version 1.0 19

DispChar

Subroutine to display a single character using the given font array at any (x,y) in the given
foreground and background colors. The x-coordinate is returned set to the x-location of the
next character.

When calling the routines to display characters or strings, the current screen mode must be a
graphics mode. The coordinates and colors should be within the range available for the
current screen mode. If the foreground or background color is negative, the character
foreground or background is not drawn.

To draw a character in only a foreground color, the routine FastChar is faster. To display a
string, see the routines DispString and FastString.

Format:
DECLARE SUB DispChar(Char%, FClr%, BClr%, X%, Y%, FontArray%())

Arguments:
 Char% = ASCII code of character to display
 FClr% = foreground color (negative to not draw foreground)
 BClr% = background color (negative to not draw background)
 X% = x-coordinate of upper-left corner of character,
 returned pointing to start of next character
 Y% = y-coordinate of upper-left corner of character
 FontArray% = integer array containing font data

Example:
The following example demonstrates using DispChar to display single characters in
combinations of foreground and background colors.

REM: EX_DCHAR.BAS, Unregistered Version 1.0
REM: Example of using DispChar to display characters.

DECLARE SUB DispChar(Char%, FClr%, BClr%, X%, Y%, FontArray%())
DECLARE SUB LoadRsrcFileFont(FlName$, FontNum%, FontArray%(), _

RetCode%, RetMsg$)

'...setup a VGA screen mode...
SCREEN 12

'...dim array for font data (use REDIM so its DYNAMIC)...
REDIM FontArray%(1)

PRINT : PRINT "Loading a font from SAMPLE.FON..."

'...load the font in the example FON file...
CALL LoadRsrcFileFont("SAMPLE.FON", 1, FontArray%(), RetCode%, _

RetMsg$)

QBWinFont: Unregistered Version 1.0 20
'...check return code, catches non-existent file...
IF (RetCode% <> 0) THEN STOP

'...display an "A" in foreground and background color...
CALL DispChar(ASC("A"), 4, 7, 100, 100, FontArray%())

'...display a "B" in foreground color only...
CALL DispChar(ASC("B"), 4, -1, 100, 130, FontArray%())

'...display a "C" in background color only...
CALL DispChar(ASC("C"), -1, 7, 100, 160, FontArray%())

END

QBWinFont: Unregistered Version 1.0 21

DispString

Subroutine to display a string using the given font array at any (x,y) in the given foreground
and background colors. The x-coordinate is returned set to the x-location of the next
character.

When calling the routines to display characters or strings, the current screen mode must be a
graphics mode. The coordinates and colors should be within the range available for the
current screen mode. If the foreground or background color is negative, the character
foreground or background is not drawn.

To draw a string in only a foreground color, the routine FastString is faster. To display only a
single character, see the routines DispChar and FastChar.

Format:
DECLARE SUB DispString(Text$, FClr%, BClr%, X%, Y%, _

FontArray%())

Arguments:
 Text$ = text to display
 FClr% = foreground color (negative to not draw foreground)
 BClr% = background color (negative to not draw background)
 X% = x-coordinate of upper-left corner of character,
 returned pointing to start of next character
 Y% = y-coordinate of upper-left corner of character
 FontArray% = integer array containing font data

Example:
The following example demonstrates using DispString to display text in combinations of
foreground and background colors.

REM: EX_DSTRG.BAS, Unregistered Version 1.0
REM: Example of using DispString to display text.

DECLARE SUB DispString (Text$, FClr%, BClr%, X%, Y%, FontArray%())
DECLARE SUB LoadRsrcFileFont (FlName$, FontNum%, FontArray%(), _

RetCode%,

'...setup a VGA screen mode...
SCREEN 12

'...dim array for font data (use REDIM so its DYNAMIC)...
REDIM FontArray%(1)

PRINT : PRINT "Loading a font from SAMPLE.FON..."

'...load the font in the example FON file...
CALL LoadRsrcFileFont("SAMPLE.FON", 1, FontArray%(), RetCode%, RetMsg$)

QBWinFont: Unregistered Version 1.0 22
'...check the return code...
IF (RetCode% <> 0) THEN STOP

'...display string in foreground and background color...
CALL DispString(" Foreground & Background ", 4, 7, 100, 100, _

FontArray%())

'...text foreground only, negative color forces no background...
CALL DispString(" Foreground Only ", 4, -1, 100, 135, FontArray%())

'...text background only, negative color forces no foreground...
CALL DispString(" Background Only ", -1, 7, 100, 170, FontArray%())

END

QBWinFont: Unregistered Version 1.0 23

FastChar
__

Subroutine to display a single character using the given font array at any (x,y) in the given
foreground color. The x-coordinate is returned set to the x-location of the next character.

When calling the routines to display characters or strings, the current screen mode must be a
graphics mode. The coordinates and colors should be within the range available for the
current screen mode.

This routine is faster than DispChar, since the main loop can be optimized for foreground
color only. To draw a single character in both foreground and background colors, see the
routine DispChar. To display a string, see the routines DispString and FastString.

Format:
DECLARE SUB FastChar(Char%, FClr%, X%, Y%, FontArray%())

Arguments:
 Char% = ASCII code of character to display
 FClr% = foreground color
 X% = x-coordinate of upper-left corner of character,
 returned pointing to start of next character
 Y% = y-coordinate of upper-left corner of character
 FontArray% = integer array containing font data

Example:
The following program does a timing comparison between DispChar and FastChar.

REM: EX_FSTCH.BAS, Unregistered Version 1.0
REM: Example of using FastChar to display characters.

DECLARE SUB BLOADFont(FlName$, FontArray%(), RetCode%)
DECLARE SUB DispChar(Char%, FClr%, BClr%, X%, Y%, FontArray%())
DECLARE SUB FastChar(Char%, FClr%, X%, Y%, FontArray%())

'...setup a VGA screen mode...
SCREEN 12

'...dimen array for font data (use REDIM so its DYNAMIC)...
REDIM FontArray%(1)

PRINT : PRINT "BLOAD'ing a font from DTCH_BLD.BIN..."

'...load the font in one of the example BIN files...
CALL BLOADFont("DTCH_BLD.BIN", FontArray%(), RetCode%)

'...check return code, catches non-existent file...
IF (RetCode% <> 0) THEN STOP

'...draw A to Z, 25 times using DispChar (fgnd & bgnd)...

QBWinFont: Unregistered Version 1.0 24
Start1 = TIMER
FOR Dupl% = 1 TO 25
 X% = 50 + Dupl%: Y% = 60 + Dupl%
 FOR Char% = 65 TO 90
 CALL DispChar(Char%, 7, 8, X%, Y%, FontArray%())
 NEXT Char%
NEXT Dupl%
End1 = TIMER

'...draw A to Z, 25 times using DispChar (fgnd only)...
Start2 = TIMER
FOR Dupl% = 1 TO 25
 X% = 50 + Dupl%: Y% = 100 + Dupl%
 FOR Char% = 65 TO 90
 CALL DispChar(Char%, 7, -1, X%, Y%, FontArray%())
 NEXT Char%
NEXT Dupl%
End2 = TIMER

'...display letters A to Z, 25 times using FastChar...
Start3 = TIMER
FOR Dupl% = 1 TO 25
 X% = 50 + Dupl%: Y% = 140 + Dupl%
 FOR Char% = 65 TO 90
 CALL FastChar(Char%, 7, X%, Y%, FontArray%())
 NEXT Char%
NEXT Dupl%
End3 = TIMER

'...skip down a ways and print results...
LOCATE 15, 1: PRINT "Approximate times for 25 displays: "
PRINT USING " DispChar (fgnd, bgnd): ##.##"; End1 - Start1
PRINT USING " DispChar (fgnd only): ##.##"; End2 - Start2
PRINT USING " FastChar: ##.##"; End3 - Start3

END

QBWinFont: Unregistered Version 1.0 25

FastString

Subroutine to display a string using the given font array at any (x,y) in a foreground color
only. The x-coordinate is returned set to the x-location of the next character.

When calling the routines to display characters or strings, the current screen mode must be a
graphics mode. The coordinates and colors should be within the range available for the
current screen mode.

This routine is faster than DispString, since the main loop is optimized for foreground color
only. To display text in both foreground and background colors, see the routine DispString.

Format:
DECLARE SUB FastString(Text$, FClr%, X%, Y%, FontArray%())

Arguments:
 Text$ = text to display
 FClr% = foreground color
 X% = x-coordinate of upper-left corner of character,
 returned pointing to start of next character
 Y% = y-coordinate of upper-left corner of character
 FontArray% = integer array containing font data

Example:
The following example demonstrates using FastString to display text from several of the
fonts in \windows\system\sseriff.fon, a font file distributed with Windows 3.x. (You may
need to change the directory for your system.)

REM: EX_FSTST.BAS, Unregistered Version 1.0
REM: Example of using FastString to display text.

DECLARE SUB FastString(Text$, FClr%, X%, Y%, FontArray%())
DECLARE SUB LoadRsrcFileFont(FlName$, FontNum%, FontArray%(), _

RetCode%, RetMsg$)

'...setup a VGA screen mode...
SCREEN 12

'...set file name (change to match your system if necessary)...
FlName$ = "\windows\system\SSERIFF.FON"

'...dim arrays for font data (use REDIM so they're DYNAMIC)...
REDIM Serif8pt%(1), Serif10pt%(1), Serif12pt%(1)

PRINT : PRINT "Loading fonts from "; FlName$; "..."

'...load the eight-point font (#1 in file)...
CALL LoadRsrcFileFont(FlName$, 1, Serif8pt%(), RetCode%, RetMsg$)
IF (RetCode% <> 0) THEN STOP

QBWinFont: Unregistered Version 1.0 26

'...load the ten-point font (#2 in file)...
CALL LoadRsrcFileFont(FlName$, 2, Serif10pt%(), RetCode%, RetMsg$)
IF (RetCode% <> 0) THEN STOP

'...load the twelve-point font (#3 in file)...
CALL LoadRsrcFileFont(FlName$, 3, Serif12pt%(), RetCode%, RetMsg$)
IF (RetCode% <> 0) THEN STOP

'...display a sample string in each font...
CALL FastString(" MS Sans Serif 8-point ", 2, 20, 70, Serif8pt%())
CALL FastString(" MS Sans Serif 10-point ", 2, 20, 90, Serif10pt%())
CALL FastString(" MS Sans Serif 12-point ", 2, 20, 116, Serif12pt%())

END

QBWinFont: Unregistered Version 1.0 27

LoadFontFile

Creates a font array from font data stored in a Windows' font (FNT) file. The font number to
load is not specified, since FNT files can only contain a single font.

To allow redimensioning, the font array must be DYNAMIC. This can be done by using the
$DYNAMIC metacommand in QB, or more simply, by creating the original array with REDIM
instead of DIM. (See the example below.)

Return codes and messages are as follows, zero being font loaded successfully. (Note certain
return codes are skipped to be consistent with the codes returned by the LoadRsrcFileFont
subroutine.)

0 Null [font successfully loaded]
1 Invalid font file, file too short or not present
5 Bad value of first and/or last font character
6 Font is a vector font, not a bitmap font
7 Font is version number 3, not supported
8 Number of bytes needed negative or greater than 64K

Format:
DECLARE SUB LoadFontFile(FlName$, FontArray%(), RetCode%, _

RetMsg$)

Arguments:
 FlName$ = name of font (FNT) file
 FontArray% = integer array for storing font data, must be
 a DYNAMIC array to allow redimensioning
 RetCode% = return code
 RetMsg$ = return message

Example:
The following example demonstrates creating a font array from the font data stored in a
Windows' font (FNT) file. The user is prompted for the name of the font file, and a short
sample of text is displayed. As an example, try the file sample.fnt supplied with this
program.

REM: EX_LDFNT.BAS, Unregistered Version 1.0
REM: Example of loading a font from Windows' font (FNT) file.

DECLARE SUB FastString(Text$, FClr%, X%, Y%, FontArray%())
DECLARE SUB LoadFontFile(FlName$, FontArray%(), RetCode%, RetMsg$)

'...setup a VGA screen mode...
SCREEN 12

'...prompt for a file name and file number...
INPUT "Enter Windows' font file (FNT) name (try SAMPLE.FNT): ", FlName$

QBWinFont: Unregistered Version 1.0 28
'...dim array for font data (use REDIM so its DYNAMIC)...
REDIM FontArray%(1)

PRINT : PRINT "Loading font from "; FlName$; "..."

'...load the specified font from the file...
CALL LoadFontFile(FlName$, FontArray%(), RetCode%, RetMsg$)

IF (RetCode% <> 0) THEN

 PRINT
 PRINT "***** ERROR: RetCode% = "; RetCode%
 PRINT "***** "; RetMsg$

ELSE

 '...display a sample of the font...
 CALL FastString("Sample of Font ", 2, 20, 80, FontArray%())

END IF

END

QBWinFont: Unregistered Version 1.0 29

LoadRsrcFileFont

Creates a font array from font data stored in a Windows' resource file, typically an FON file.

Since font resource files can contain multiple fonts, the font number to load must be specified.
The routine counts fonts in the order encountered in the resource file starting at one, until the
desired font number is reached. If the font number is not reached, an error is returned.

To allow redimensioning, the font array must be DYNAMIC. This can be done by using the
$DYNAMIC metacommand in QB, or more simply, by creating the original array with REDIM
instead of DIM. (See the example below.)

Return codes and messages are as follows, zero being font loaded successfully:
0 Null [font successfully loaded]
1 Invalid rsrc file, file too short or not present
2 Invalid rsrc file, ExeHdr signature (MZ) not present
3 Invalid rsrc file, WinInfo signature (NE) not present
4 Desired font number (##) not found
5 Bad value of first and/or last font character
6 Desired font number is a vector font, not a bitmap font
7 Desired font is version number 3, not supported
8 Number of bytes needed negative or greater than 64K

Format:
DECLARE SUB LoadRsrcFileFont(FlName$, FontNum%, FontArray%(), _

RetCode%, RetMsg$)

Arguments:
 FlName$ = name of resource file (typically FON file)
 FontNum% = number of font to load
 FontArray% = integer array for storing font data, must be
 a DYNAMIC array to allow redimensioning
 RetCode% = return code
 RetMsg$ = return message

Example:
The following example demonstrates creating font arrays from font data stored in a
resource file. The user is prompted for the name of the resource file. As an example, try
some of the FON files supplied with Windows or sample.fon supplied with this program.

REM: EX_LRSRC.BAS, Unregistered Version 1.0
REM: Example of loading a font from Windows resource files.

DECLARE SUB FastString(Text$, FClr%, X%, Y%, FontArray%())
DECLARE SUB LoadRsrcFileFont(FlName$, FontNum%, FontArray%(), _

RetCode%, RetMsg$)

QBWinFont: Unregistered Version 1.0 30
'...setup a VGA screen mode...
SCREEN 12

'...prompt for a file name and file number...
INPUT "Enter resource file name (typically FON file): ", FlName$
INPUT "Enter font number from file to load (try 1): ", FontNum%

'...dim array for font data (use REDIM so its DYNAMIC)...
REDIM FontArray%(1)

PRINT : PRINT "Loading font from "; FlName$; "..."

'...load the specified font from the file...
CALL LoadRsrcFileFont(FlName$, FontNum%, FontArray%(), RetCode%, _

RetMsg$)

IF (RetCode% <> 0) THEN

 PRINT
 PRINT "***** ERROR: RetCode% = "; RetCode%
 PRINT "***** "; RetMsg$

ELSE

 '...display a sample of the font...
 CALL FastString("Sample of Font ", 2, 20, 80, FontArray%())

END IF

END

QBWinFont: Unregistered Version 1.0 31

WidthString%

Function which returns the width in pixels of the given string in the specified font. This
allows the calling program to check to insure the text fits the display before drawing.

Format:
DECLARE FUNCTION WidthString%(Text$, FontArray%())

Arguments:
 Text$ = text of which to compute width
 FontArray% = integer array containing font data

Example:
The following example uses WidthString to display text between two x-limits. The text
is broken between words to fit the display area.

REM: EX_WIDTH.BAS, Unregistered Version 1.0
REM: Example of using WidthString to break a line.

DECLARE FUNCTION WidthString%(Text$, FontArray%())

DECLARE SUB BLOADFont(FlName$, FontArray%(), RetCode%)
DECLARE SUB FastString(Text$, FClr%, X%, Y%, FontArray%())

'...setup a VGA screen mode...
SCREEN 12

'...dimension array for font data (use REDIM so they're DYNAMIC)...
REDIM FontArray%(1)

'...load in a fonts and check the return code...
CALL BLOADFont("DTCH_BLD.BIN", FontArray%(), RetCode%)
IF (RetCode% <> 0) THEN STOP

'...define x-limits in which to display, y start, and text color...
XMin% = 100: XMax% = 300: YRow% = 100: FClr% = 7

Text$ = "This is a simple demonstration of breaking text between "
Text$ = Text$ + "words to fit on a line."

'...compute line width...
BxWidth% = XMax% - XMin% + 1

'...start at the first char and a min x-coord...
i% = 1: X% = XMin%

'...set row spacing - vertical spacing + any vertical padding...
DRow% = FontArray%(7) + FontArray%(10)

DO

QBWinFont: Unregistered Version 1.0 32
 '...find the next word break (the next space)...
 j% = INSTR(i%, Text$, " ")

 '...if no space found before the end, skip to the end...
 IF (j% <= 0) THEN j% = LEN(Text$)

 '...pull the word...
 Word$ = MID$(Text$, i%, j% - i% + 1)

 '...compute its width...
 WordWidth% = WidthString%(Word$, FontArray%())

 '...will this word exceed the length of the box or end of text...
 IF (CurrLine% + WordWidth% > BxWidth%) THEN

 '...display the text for the line...
 CALL FastString(LineText$, FClr%, X%, YRow%, FontArray%())

 '...set to rwo start and add line spacing to next row...
 X% = XMin%: YRow% = YRow% + DRow%

 '...the word we just found starts the new line...
 LineText$ = Word$: CurrLine% = WordWidth%

 ELSE

 '...just add the text to the line and the width counter...
 LineText$ = LineText$ + Word$: CurrLine% = CurrLine% + WordWidth%

 END IF

 '...if we reached end of string, display any remaining text...
 IF (j% >= LEN(Text$)) THEN
 CALL FastString(LineText$, FClr%, X%, YRow%, FontArray%())
 END IF

 '...set i% to the start of the next word...
 i% = j% + 1

LOOP UNTIL (i% > LEN(Text$))

END

QBWinFont: Unregistered Version 1.0 33

Appendix B
Registration Instructions

QBWinFont: Unregistered Version 1.0 34

QBWinFont is shareware. If you continue to use this product after a trial period, you must
register it.

Registered users will receive the most recent version of the QBWinFont package on disk,
which includes all documentation in Windows Write (WRI) format. To keep the price lower
for the basic registration, printed, unbound copies of the manual are sold separately for a
small fee.

Any questions you may have about the QBWinFont package before ordering are welcomed
at the address below or at the e-mail address: joe@galcit.caltech.edu.

Fill in the order form on the following page and send with a check or money order in US
dollars for the total amount indicated to: Nybble Software

P.O. Box 7213
Tuscaloosa, AL 35486

Foreign Orders: Please enclose only checks or money orders in US dollars drawn on a US
bank. Checks drawn on banks outside the US will be returned, since they cost more to cash in
bank fees than the registration amount.

QBWinFont: Unregistered Version 1.0 35

QBWinFont Registration Form

 NAME __
STREET __
 CITY __
STATE _________________________ ZIP _____________
IF DESIRED: PHONE _______________________
 E-MAIL _______________________
HOW DID YOU FIND
 OUR PROGRAM _________________________________

[] QBWinFont Registration .. ____8.00_

Includes most recent version on disk with complete documentation in
Windows' Write (WRI) format. Please specify disk type:

[] 3 1/2"[] 3 1/2" 720K only
[] 5 1/4"[] 5 1/4" 360K only

[] Printed, unbound copy of documentation Add $2.00
_____.00_

 Foreign Orders, Add $2.00 _____.00_
 Shipping & Handling

 Total Amount Enclosed _____.00_
 US Dollars

Mail Completed Form With Check or Money Order To: Nybble SoftWare
P.O Box 7213
Tuscaloosa, AL 35486

